Engineering of Neutral Excitons and Exciton Complexes in Transition Metal Dichalcogenide Monolayers through External Dielectric Screening

نویسندگان

  • Sven Borghardt
  • Jhih-Sian Tu
  • Florian Winkler
  • Jürgen Schubert
  • Willi Zander
چکیده

In order to fully exploit the potential of transition metal dichalcogenide monolayers (TMD-MLs), the well-controlled creation of atomically sharp lateral heterojunctions within these materials is highly desirable. A promising approach to create such heterojunctions is the local modulation of the electronic structure of an intrinsic TMD-ML via dielectric screening induced by its surrounding materials. For the realization of this non-invasive approach, an in-depth understanding of such dielectric effects is required. We report on the modulations of excitonic transitions in TMD-MLs through the effect of dielectric environments including low-k and high-k dielectric materials. We present absolute tuning ranges as large as 37 meV for the optical band gaps of WSe2 and MoSe2 MLs and relative tuning ranges on the order of 30% for the binding energies of neutral excitons in WSe2 MLs. The findings suggest the possibility to reduce the electronic band gap of WSe2 MLs by 120 meV, paving the way towards dielectrically defined lateral heterojunctions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polarization and time-resolved photoluminescence spectroscopy of excitons in MoSe2 monolayers

We investigate valley exciton dynamics in MoSe2 monolayers in polarizationand time-resolved photoluminescence (PL) spectroscopy at 4K. Following circularly polarized laser excitation, we record a low circular polarization degree of the PL of typically ≤ 5%. This is about 10 times lower than the polarization induced under comparable conditions in MoS2 and WSe2 monolayers. The evolution of the ex...

متن کامل

Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2: Experiments and theory

We measure the optical-absorption spectra and optical conductivities of excitons and trions in monolayers of metal dichalcogenide MoS2 and compare the results with theoretical models. Our results show that the Wannier-Mott model for excitons with modifications to account for small exciton radii and large exciton relative wave function spread in momentum space, phase space blocking due to Pauli ...

متن کامل

Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2

We present results on the radiative lifetimes of excitons and trions in a monolayer of metal dichalcogenide MoS2. The small exciton radius and the large exciton optical oscillator strength result in radiative lifetimes in the 0.18–0.30 ps range for excitons that have small in-plane momenta and couple to radiation. Average lifetimes of thermally distributed excitons depend linearly on the excito...

متن کامل

Slow cooling and efficient extraction of C-exciton hot carriers in MoS2 monolayer

In emerging optoelectronic applications, such as water photolysis, exciton fission and novel photovoltaics involving low-dimensional nanomaterials, hot-carrier relaxation and extraction mechanisms play an indispensable and intriguing role in their photo-electron conversion processes. Two-dimensional transition metal dichalcogenides have attracted much attention in above fields recently; however...

متن کامل

Spin-orbit engineering in transition metal dichalcogenide alloy monolayers.

Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light-matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo(1-x)WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017